skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Çiperiani, Mirela"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Let E E be an elliptic curve over Q \mathbb {Q} with Mordell–Weil rank 2 2 and p p be an odd prime of good ordinary reduction. For every imaginary quadratic field K K satisfying the Heegner hypothesis, there is (subject to the Shafarevich–Tate conjecture) a line, i.e., a free Z p \mathbb {Z}_p -submodule of rank 1 1 , in E ( K ) ⊗<#comment/> Z p E(K)\otimes \mathbb {Z}_p given by universal norms coming from the Mordell–Weil groups of subfields of the anticyclotomic Z p \mathbb {Z}_p -extension of K K ; we call it theshadow line. When the twist of E E by K K has analytic rank 1 1 , the shadow line is conjectured to lie in E ( Q ) ⊗<#comment/> Z p E(\mathbb {Q})\otimes \mathbb {Z}_p ; we verify this computationally in all our examples. We study the distribution of shadow lines in E ( Q ) ⊗<#comment/> Z p E(\mathbb {Q})\otimes \mathbb {Z}_p as K K varies, framing conjectures based on the computations we have made. 
    more » « less
    Free, publicly-accessible full text available July 31, 2026
  2. Abstract Let E / Q \mathrm{E}/\mathbb{Q}be an elliptic curve and 𝑝 a prime of supersingular reduction for E \mathrm{E}.Consider a quadratic extension L / Q p L/\mathbb{Q}_{p}and the corresponding anticyclotomic Z p \mathbb{Z}_{p}-extension L / L L_{\infty}/L.We analyze the structure of the points E ( L ) \mathrm{E}(L_{\infty})and describe two global implications of our results. 
    more » « less